Light-powered chip makes AI 100 times more efficient
Researchers have developed a silicon chip that uses light with electricity to perform convolution operations for AI, dramatically reducing energy use and increasing speed.
Artificial intelligence is consuming enormous amounts of energy, but researchers at the University of Florida have built a chip that could change everything by using light instead of electricity for a core AI function. By etching microscopic lenses directly onto silicon, they’ve enabled laser-powered computations that cut power use dramatically while maintaining near-perfect accuracy.
Artificial intelligence (AI) systems are increasingly central to technology, powering everything from facial recognition to language translation. But as AI models grow more complex, they consume vast amounts of electricity -- posing challenges for energy efficiency and sustainability. A new chip developed by researchers at the University of Florida could help address this issue by using light, rather than just electricity, to perform one of AI's most power-hungry tasks. Their research is reported in Advanced Photonics.
The chip is designed to carry out convolution operations, a core function in machine learning that enables AI systems to detect patterns in images, video, and text. These operations typically require significant computing power. By integrating optical components directly onto a silicon chip, the researchers have created a system that performs convolutions using laser light and microscopic lenses -- dramatically reducing energy consumption and speeding up processing.
News
Dept.
Contact Us
- Add: 2485 Huntington Drive#218 San Marino, US CA91108
- Tel: +1-626-7800469
- Fax: +1-626-7805898
- Address: 1702 SINO CENTER 582-592 Nathan Road, Kowloon H.K.
- TEL: +852-2384-0332
- FAX: +852-2771-7221
- Add: Rm 7, Floor 7, No. 95 Fu-Kwo Road, Taipei, Taiwan
- Tel: +886-2-85124115
- Fax: +886-2-22782010
- Add: Rm 406, No.1 Hongqiao International, Lane 288 Tongxie Road,Changning District, Shanghai
- Tel: +86-21-60192558
- Fax: +86-21-60190558
- Add: 19 Avenue Des Arts, 101, BRUSSELS,
- Tel: +322 -4056677
- Fax: +322-2302889


Location:
