This simple magnetic trick could change quantum computing forever
Researchers have unveiled a new quantum material that could make quantum computers much more stable by using magnetism to protect delicate qubits from environmental disturbances. Unlike traditional approaches that rely on rare spin-orbit interactions, this method uses magnetic interactions—common in many materials—to create robust topological excitations. Combined with a new computational tool for finding such materials, this breakthrough could pave the way for practical, disturbance-resistant quantum computers.
Illustration of a new strategy to create materials with robust quantum properties, by harnessing magnetic interactions (represented by the red and blue arrows). The small green spheres represent sites where electrons can reside and move along the chain. Special magnetic atoms (purple spheres with arrows) interact with the electrons at certain sites, shown by the blueish clouds. These interactions create protected edge states (green cloud) that could help make quantum computers more stable and less sensitive to noise. Credit: Jose L. Lado
The entry of quantum computers into society is currently hindered by their sensitivity to disturbances in the environment. Researchers from Chalmers University of Technology in Sweden, and Aalto University and the University of Helsinki in Finland, now present a new type of exotic quantum material, and a method that uses magnetism to create stability. This breakthrough can make quantum computers significantly more resilient - paving the way for them to be robust enough to tackle quantum calculations in practice.
News
Dept.
Contact Us
- Add: 2485 Huntington Drive#218 San Marino, US CA91108
- Tel: +1-626-7800469
- Fax: +1-626-7805898
- Address: 1702 SINO CENTER 582-592 Nathan Road, Kowloon H.K.
- TEL: +852-2384-0332
- FAX: +852-2771-7221
- Add: Rm 7, Floor 7, No. 95 Fu-Kwo Road, Taipei, Taiwan
- Tel: +886-2-85124115
- Fax: +886-2-22782010
- Add: Rm 406, No.1 Hongqiao International, Lane 288 Tongxie Road,Changning District, Shanghai
- Tel: +86-21-60192558
- Fax: +86-21-60190558
- Add: 19 Avenue Des Arts, 101, BRUSSELS,
- Tel: +322 -4056677
- Fax: +322-2302889


Location:
